Structural insights into specificity and diversity in mechanisms of ubiquitin recognition by ubiquitin-binding domains.
نویسندگان
چکیده
UBDs [Ub (ubiquitin)-binding domains], which are typically small protein motifs of <50 residues, are used by receptor proteins to transduce post-translational Ub modifications in a wide range of biological processes, including NF-κB (nuclear factor κB) signalling and proteasomal degradation pathways. More than 20 families of UBDs have now been characterized in structural detail and, although many recognize the canonical Ile44/Val70-binding patch on Ub, a smaller number have alternative Ub-recognition sites. The A20 Znf (A20-like zinc finger) of the ZNF216 protein is one of the latter and binds with high affinity to a polar site on Ub centred around Asp58/Gln62. ZNF216 shares some biological function with p62, with both linked to NF-κB signal activation and as shuttle proteins in proteasomal degradation pathways. The UBA domain (Ub-associated domain) of p62, although binding to Ub through the Ile44/Val70 patch, is unique in forming a stable dimer that negatively regulates Ub recognition. We show that the A20 Znf and UBA domain are able to form a ternary complex through independent interactions with a single Ub molecule, supporting functional models for Ub as a 'hub' for mediating multi-protein complex assembly and for enhancing signalling specificity.
منابع مشابه
Structural insights into Parkin substrate lysine targeting from minimal Miro substrates
Hereditary Parkinson's disease is commonly caused by mutations in the protein kinase PINK1 or the E3 ubiquitin ligase Parkin, which function together to eliminate damaged mitochondria. PINK1 phosphorylates both Parkin and ubiquitin to stimulate ubiquitination of dozens of proteins on the surface of the outer mitochondrial membrane. However, the mechanisms by which Parkin recognizes specific pro...
متن کاملVersatile role of the yeast ubiquitin ligase Rsp5p in intracellular trafficking.
The ubiquitin ligase (E3) Rsp5p is the only member of the Nedd (neural-precursor-cell-expressed, developmentally down-regulated) 4 family of E3s present in yeast. Rsp5p has several proteasome-independent functions in membrane protein trafficking, including a role in the ubiquitination of most plasma membrane proteins, leading to their endocytosis. Rsp5p is also required for the ubiquitination o...
متن کاملUbiquitin-binding domains.
The covalent modification of proteins by ubiquitination is a major regulatory mechanism of protein degradation and quality control, endocytosis, vesicular trafficking, cell-cycle control, stress response, DNA repair, growth-factor signalling, transcription, gene silencing and other areas of biology. A class of specific ubiquitin-binding domains mediates most of the effects of protein ubiquitina...
متن کاملStructural insight into the specificity of the B3 DNA-binding domains provided by the co-crystal structure of the C-terminal fragment of BfiI restriction enzyme
The B3 DNA-binding domains (DBDs) of plant transcription factors (TF) and DBDs of EcoRII and BfiI restriction endonucleases (EcoRII-N and BfiI-C) share a common structural fold, classified as the DNA-binding pseudobarrel. The B3 DBDs in the plant TFs recognize a diverse set of target sequences. The only available co-crystal structure of the B3-like DBD is that of EcoRII-N (recognition sequence ...
متن کاملUbiquitin and its binding domains.
Post-translational modification by ubiquitin (ubiquitination, ubiquitylation, ubiquitinylation) is used as a robust signaling mechanism in a variety of processes that are essential for cell homeostasis. Its signaling specificity is conferred by the inherent dynamics of ubiquitin, the multivalency of ubiquitin chains, and its subcellular context, often defined by ubiquitin receptors and the subs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical Society transactions
دوره 40 2 شماره
صفحات -
تاریخ انتشار 2012